AI-Cu-Ti (Aluminum-Copper-Titanium)

V. Raghavan

The previous review of this system by [1992Ran] presented a liquidus surface, a reaction scheme, three isothermal sections at 800, 540, and 500 °C, and two vertical sections at 10 wt.% Cu and 10 wt.% Al, respectively. These were based mainly on the studies of [1971Vir] and [1973Mar]. This update presents an isothermal section at 850 °C from [1997Dur] and three partial sections at 1300, 1200, and 1000 °C from [2000Kai].

Binary Systems

The Al-Cu phase diagram [Massalski2] depicts a number of intermediate phases. CuAl₂ (θ) is a C16-type tetragonal phase. CuAl (η) has two crystal modifications, the hightemperature orthorhombic and the low-temperature monoclinic forms. The two forms of the ζ phase occur in the composition range of 55.2-59.8 at.% Cu and are stable below 590 °C. Two modifications of the ε phase occur around the composition Cu₃Al₂ and are stable above 560 °C. The structures of the phases, δ , γ_1 (Cu₉Al₄), and γ_0 , which are stable between 58 and 70 at.% Cu, are based on the γ -brass structure. The β phase (70.6-82 at.% Cu) is body-centered cubic (bcc) and is stable above 567 °C. The updated version of the Al-Ti phase diagram [2005Rag] depicts a number of intermediate phases: TiAl₃ (DO_{22} -type tetragonal), Ti₅Al₁₁ (tetragonal), TiAl₂ (HfGa₂-type tetragonal), Ti_{1-x}Al_{1+x} (AuCu-type tetragonal), Ti₃Al₅ (tetragonal), TiAl (γ) (AuCu-type tetragonal), and Ti₃Al (α_2), (DO_{19} , Ni₃Sn-type hexagonal). The Cu-Ti phase diagram [2002Oka] depicts a number of intermediate phases: Cu₄Ti (Au₄Zr-type orthorhombic) possibly with a low-temperature tetragonal modification, Cu₂Ti (Au₂V-type orthorhombic, stable between ~900-880 °C), Cu₃Ti₂ (tetragonal), CuTi₂ (MoSi₂-type tetragonal), and CuTi₃ (orthorhombic).

Ternary Phases

The three established ternary phases [1992Ran] of this system are: TiCuAl (C14, MgZn₂-type hexagonal), TiCu₂Al ($L2_1$, MnCu₂Al-type cubic), and Ti₂CuAl₅ ($L1_2$, AuCu₃-type cubic). All these phases have significant homogeneity ranges in the temperature range investigated (850-500 °C). Ti₂CuAl₅ ($L1_2$) was shown by [1992Ran] to have a homogeneity range along a constant Ti content of ~27 at.%. [1989Maz] showed that, at 1200 °C, the $L1_2$ phase has a

Fig. 1 Al-Cu-Ti isothermal section at 850 °C [1997Dur]

Fig. 2 Al-Cu-Ti partial isothermal sections near the Ti-Al side at (a) 1300 °C, (b) 1200 °C, and (c) 1000 °C [2000Kai]

"geometric center" of Al-27 at.% Ti-12 at.% Cu and a homogeneity range of ~11.5 at.% in the Al-Cu direction and ~3-4 at.% in the Al-Ti direction. The phase remains ordered up to at least 1200 °C [1989Maz].

Isothermal Sections

[1997Dur] performed a few critical experiments at 850 °C to resolve the disagreement between [1971Vir] and [1973Mar] about a tie-line. The results of [1997Dur] favor the conclusion of [1973Mar] that the tie-line is between Ti₃Al (α_2) and TiCu₂Al (L2₁) and not between TiCuAl (C14) and CuTi₂, as found by [1971Vir] at 800 °C and as recommended by [1992Ran]. A transition-type reaction: Ti₃Al + TiCu₂Al \leftrightarrow TiCuAl + CuTi₂ is necessary just above 800 °C to reconcile the two viewpoints. The isothermal section of [1997Dur] at 850 °C is redrawn in Fig. 1 to agree with the binary data accepted here. Ti₅Al₁₁ is apparently stabilized at this temperature by the addition of a few percent of Cu.

Partial isothermal sections determined by [2000Kai] at 1300, 1200, and 1000 °C depicting the relationships between (α Ti), (β Ti), Ti₃Al (α_2), and TiAl (γ) are redrawn in Fig. 2. [2001Liu] determined the distribution coefficient *K* of Ti at 800 and 700 °C and found that $K^{(\alpha Ti)/(\beta Ti)} = 0.9$ and 1.2, respectively, and that $K^{\gamma/(\beta Ti)} = 0.97$ and 0.985, respectively.

References

- **1971Vir:** P. Virdis and U. Zwicker, Phase Equilibria in the Copper-Titanium-Aluminum System, *Z. Metallkd.*, 1971, **62**(1), p 46-51, in German
- **1973Mar:** V. Ya. Markiv, V.V. Burnashova, and V.R. Ryabov, Ti-Fe-Al, Ti-Ni-Al and Ti-Cu-Al Systems, *Metallofizika*, 1973, **46**, p 103-110, in Russian
- **1989Maz:** S. Mazdiyasni, D.B. Miracle, D.M. Dimiduk, M.G. Mendiratta, and P.R. Subramanian, High Temperature Phase Equilibria of the *L*1₂ Composition in the Al-Ti-Ni, Al-Ti-Fe, and Al-Ti-Cu Systems, *Scripta Metall.*, **25**, 1989, p 327-331
- **1992Ran:** Q. Ran and H.H. Stadelmaier, Aluminum-Copper-Titanium, *Ternary Alloys*, G. Petzow and G. Effenberg, Ed., VCH Verlagsgesellschaft, Weinheim, Germany, 1992, Vol 5, p 51-66
- **1997Dur:** N. Durlu, U. Gruber, MA. Pietzka, H. Schmidt, and J.C. Schuster, Phases and Phase Equilibria in the Quaternary System Ti-Cu-Al-N at 850 °C, *Z. Metallkd.*, 1997, **88**, p 390-400
- **2000Kai:** R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, and K. Ishida, Phase Equilibria Among α (hcp), β (bcc) and γ (*L*1₀) Phases in Ti-Al Base Ternary Alloys, *Intermetallics*, 2000, **8**, p 855-867
- **2001Liu:** X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Stability Among the α (*A*1), β (*A*2), and γ (*D*8₃) Phases in the Cu-Al-X System, *J. Phase Equilibria*, 2001, **22**(4), p 431-438
- 2002Oka: H. Okamoto, Cu-Ti (Copper-Titanium), J. Phase Equilibria, 2002, 23(6), p 549-550
- 2005Rag: V. Raghavan, Al-Ti (Aluminum-Titanium), J. Phase Equilibria Diffusion, 2005, 26(2), p 171-172